DOOM-SAT

tms

March 7, 2024

Abstract
3-SAT is implemented in the 1993 shooter Doom by id Software.

This work is licensed under a |Creative Commons @ @ @

“Attribution-ShareAlike 4.0 International”! license.

1 Introduction

In this story our hero faces the forces of H3ll. Instead of the doors and keycards
normally used, H3Il has a far more sophisticated security system to keep interlopers
out: a combination lock based on the boolean satisfiability problem.

This paper is organized into three parts: one giving a brief overview of
3-SAT, one giving a short primer on Doom maps and one going over the implementation
of 3-SAT in Doom. Python code is also provided for generating boolean formulas
given a list of integers.

For copyright reasons, illustrations in this paper are based on the freely
licensed Freedoom TWADs[2]. For in-game screenshots the Woof! engineld] was
used, running freedoom?2.wad.

2 3-SAT

The boolean satisfiability problem is the problem of determining, given a boolean
formula, whether there exists an assignment of variables such that the formula
evaluates to TRUE. 3-SAT is a specific variant of the problem where each clause
in the formula has exactly three literals. The conjunctive normal form (CNF)
is a conjunction (logical AND) of clauses, each of which consists of a disjunction
(logical OR) of exactly three literals. A literal can either be a variable (z) or
the inversion of a variable (—z). An example CNF formula is:

(Zl V T2 \Y _\iL’g) A\ (1’1 \Y X \Y _LZQ)

This has the solutions x; = TRUE and 22 = 3 = FALSE. Note that the
second clause has z1 twice, which is allowed.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

The Cook-Levin theorem states that 3-SAT is NP-complete[I][5]. That
is, that 3-SAT is NP and every NP problem can be transformed into 3-SAT.
Therefore 3-SAT can serve as the basis for a good combination lock.

3 Doom maps

A Doom map is in essence a set of two-dimensional polygons, in turn built up
from four basic structures: vertices, linedefs, sidedefs and sectors.

3.1 Vertices

Vertices have an X position and a Y position. There can be a maximum of
32768 vertices in a Doom level.

3.2 Linedefs

Linedefs span from one vertex to another, and can have one or two sidedefs
associated with it, depending on whether it’s a one-sided or two-sided linedef.
A one-sided linedef defines a wall with nothing behind it, while a two-sided
linedef’s passability depends on the object in question (player or monster), the
height difference between both sides of the linedef and what flags are set for
that linedef. A linedef that has a non-zero ”action special” (sometimes called
its “type”) may be triggered by certain events, such as:

e The player crossing the linedef

e The player firing a hitscan weapon across the linedef

The player pressing ”use” on the linedef

e A monster crossing the linedef

e A missile crossing the linedef

Actions that can be triggered include things like:

e Opening/closing doors

Raising/lowering platforms and lifts

Turning on/off lights

Teleporting players and/or monsters
e And much more

A linedef also has an integer called its ”sector tag” associated with it, which
decides which sector(s) are affected by the action when triggered. Sector tags
are signed 16-bit integers which means tags can range from 0-32767. There can
be a maximum of 65535 linedefs in a Doom level.

3.3 Sidedefs

A sidedef defines each ”side” of a linedef and specifies the texture(s) used for
that side of the linedef (upper, middle and lower texture) as well as the index
(not tag!) of the sector that this sidedef faces. There can be a maximum of
32768 sidedefs in a Doom level.

3.4 Sectors

A sector is typically a single polygon. Technically a sector can be composed
of multiple non-contiguous polygons, none of which necessarily must be closed.
Each sector has a tag. Multiple sectors can use the same tag, which means a
tag can be used to refer to multiple sectors. There can be a maximum of 32768
sectors in a Doom level.

4 3-SAT building blocks

4.1 Variables

A variable is a sector tag in this implementation.

Each variable has two buttons associated with it: one button to set it, and
one button to clear it. The map is set up such that all variables are initialized
to zero.

Each button is a linedef triggering the raising or lowering of all sector floors
tagged by that linedef. Specifically, the action special ”64 SR Floor To Lowest
Adjacent Ceil” (LAC) is used to set a variable, and the action special 760 SR
Floor To Lowest Adjacent Floor” (LAF) is used to clear a variable. Pressing a
button thus causes all tagged floors to either rise to a level set by an adjacent
sector coming "down” from the ceiling, or lowering the segments back to their
original positions, which is always the same as the surrounding floor height. See
figure

Due to signed 16-bit integers being used for tags, and needing one tag for
geometry that doesn’t move (typically tagged zero), there can be up to 32767
variables in the original Doom. Other constraints in the map format, such as
the maximum number of vertices and sectors, makes the number of variables
lower in practice. We will get to this in section [5.1

Yet another constraint is the number of so-called visplanes. We will not
concern ourselves with this limit here, since maps can be designed with sufficient
occlusion to make visplane concerns null in the context of this work.

4.2 Literals

A literal is defined by the passability through a section of the map. Multiple
rules specify whether the player can pass through a two-sided linedef, but for
this paper we only care about one: height difference.

LAF

Figure 1: A variable (floor) being set/cleared. The direction of player movement
is left to right. The light gray sector is in the background, to the side of the
sector being raised/lowered. When set, the sector in front of the player forms a
wall that blocks their way. This is the negative literal.

In the original Doom (and Doom II) released in 1993 the player can pass
through a linedef if the sector floor on the other side is either lower than the
current sector’s floor, or no more than 24 units higher (assuming the player is
standing on the floor). The latter rule is used to implement stairs. Some forks
implement heretical features, most notably jumping, which we must take into
account. The player can jump up to 36 units vertically using default settings
in most forks. This means that a height difference of 61 or greater cannot be
crossed in any fork the author is aware of. In this work a height difference of
64 has been chosen for impassable walls.

Each literal consists of a ”gate” structure and an ”indicator” structure. The
gate is what the player passes through. The indicators are placed such that the
player can see them when operating the buttons, so that they don’t have to run
the "maze” every time they change its state to see if they can pass through.
Indication is also implemented via the raising and lowering of floors, using the
same sector tag as the corresponding literal.

4.2.1 Negative literals

A negative literal means the section can be passed in its initial state. The
realization is shown in figures [I] 2] and 3] When the ”set” button is pressed, a
floor segment is raised 64 units, blocking the player’s path. The height of 64 is
set by the small square to the right of the gate in figure [2| by having its ceiling
be at the desired height.

The negative indicator is visible by default, and covered when the player
pushes the ”set” button. This is visible in the foreground in figure [3|

The negative literal uses 6 vertices, 7 linedefs and 2 sectors for the gate, and
8 vertices, 8 linedefs and 2 sectors for the indicator. The number of sidedefs
depends on texture choice and sidedef compression, and can be as low as 2 while

Figure 2: Negative literal in Slade[3]. Gate on top, indicator on the bottom.

maintaining indicator functionality.

4.2.2 Positive literals

A positive literal means the section cannot be passed unless the ”set” button
has been pressed. This means its default state should be an impassable 64 unit
high wall. The idea to make the wall passable is to raise a small set of stairs.
The number of steps raised must be more than one, because a single step cannot
bring the player up more than 24 units in Doom, leaving 40 more units to scale.
Two steps will do the job. Wrapping the steps around the wall is useful for
being able to backtrack. The realization is shown in figures [f] and [5] Figure [f]
shows a schematic view.

The positive indicator is not visible by default. It is raised when the player
pushes the ”set” button.

The positive literal uses 15 vertices, 19 linedefs and 5 sectors for the gate,
and 8 vertices, 8 linedefs and 2 sectors for the indicator. The number of sidedefs
can again be as low as 2.

4.3 Clauses

A clause consists of three literals. More or fewer literals could also be used, but
for this work three literals are always used. The three literals are placed next
to each other in such a way that either evaluating to TRUE allows the player
to pass through that clause. Multiple clauses can be chained together in many
ways. For this work an horizontal wave-like arrangement is used, as illustrated
in figure[7} Each short horizontal line corresponds to a literal, and each clause is
a group of three such literals. Walls are placed such that the player cannot jump
from say the top of a positive literal to the top of a negative in the next clause,
which might be possible if the clauses were arranged in a linear north-south
fashion. The player is thus forced to pass through the structure in the intended
way.

Figure 3: Negative literal in 3D in Slade. Cleared and passable state (-FALSE =
TRUE) on the left, set and impassable state (-"TRUE = FALSE) on the right.
Note the visible indicator on the left, and its occluded state on the right.

Figure 4: Positive literal in Slade. Gate on top, indicator on the bottom. The
two small squares on the left set the height of each ”step”.

Figure 5: Positive literal in 3D in Slade. Cleared and impassable state on the
left, set and passable state on the right. Note the invisible indicator on the left,
and the raised and visible indicator on the right.

Set

v

Clear

Figure 6: Positive version of [l As before, the light gray sectors are to the side.
When the variable is set, stairsteps are raised, making the literal passable.

T

Figure 7: Clauses arranged in a horizontal manner such that the player passes
from right to left in a wave-y manner.

Figure 8: Full implementation in Slade.

5 Implementation

The full implementation is shown in figures [8]and [9] It has 19 clauses and 10
variables. The player enters from the east. The buttons are on the southern
platform overlooking the entire structure.

A program listing is given in appendix [A] that, given the number of variables
nbits and a list of integers ints, finds a set of clauses that, when the variables
are interpreted as an integer, evaluates to TRUE for the integers in ints and
no others. It can therefore be used to implement a combination lock with more
than one solution. The program runs indefinitely, outputting the shortest list of
clauses found so far, with negative integers corresponding to negative literals,
and positive integers to positive literals. For some sets of integers the shortest
list of clauses isn’t always the most interesting, especially when do_random is
set to False.

5.1 Limitations

As mentioned ealier in this paper, the number of variables is limited by limitations
in the Doom map format. The table below summarizes how the map format
limits the number of variables for each type of literal.

Figure 9: Full implementation in-game. The clear button for bit 7 is active and

the arrowed indicator is lowering, corresponding to a positive literal evaluating
to FALSE.

Literal | Vertices | Linedefs | Sectors
Negative 2340 4369 8191
Positive 1424 2427 4681

The above values were computed by dividing the limit on the number of
vertices, linedefs and sectors by the number of such elements required by each
literal. Sidedefs are not considered since they are easily compressed. We see
that the lowest value is [32768/(1548)| = 1424. If we can’t control the number
of positive literals then we must take this as the upper bound to the number of
literals in this implementation. In practice the number of literals is even lower
due to the need for buttons and other geometry.

6 Conclusions

3-SAT has been implemented in Doom, with satisfiability defined as physical
passability through in-game space. A program has been written for generating
3-SAT formulas which evaluate to TRUE for only a given list of integers and no
others.

7 Future work

It may be possible to implement multi-bit literals by using lifts that stop on
multiple levels. The author suspects the necessary added geometry for doing
this make it not worthwhile, but perhaps there is a ”sweet spot” for ternary or
quaternary logic.

A more economical set of literal designs could increase the number of possible
clauses while keeping with Doom’s limits.

Finally, the present work could be adapted for real-world binary combination
locks that are effectively impossible to ”feel” one’s way to the combination for,
unlike conventional combination locks.

References

[1] Stephen Cook. The complexity of theorem proving procedures. Proceedings
of the Third Annual ACM Symposium on Theory of Computing, page
151-158, 1971.

[2] Freedoom developers. Freedoom. https://freedoom.github.io/, 2024.
Accessed 2024-02-06.

[3] Slade developers. Slade. https://slade.mancubus.net/, 2024. Accessed
2024-03-06.

[4] Woof! developers. Woof! https://github.com/fabiangreffrath/woof|
2024. Accessed 2024-02-06.

10

https://freedoom.github.io/
https://slade.mancubus.net/
https://github.com/fabiangreffrath/woof

[6] Leonid Levin. YuuBepcanbHble 3ajaun nepebopa (universal search
problems). Problems of Information Transmission, 9:115-116, 1973.

11

A doom _sat.py

from random import randint, seed

def run(nbits, ints, do_random):
solutions = list (range(l << nbits))

clause = [—1, 0, 0]
clauses = []

while len(solutions) > len(ints):
#print (solutions)
if do_random:

clause = (
randint (0, nbits —1),
randint (0, nbits —1),
randint (0, nbits—1)
)
else:

clause [0] +=1
if clause[0] >= nbits:
clause [0] = 0
clause [1] 4= 1
if clause[l] >= nbits:
clause [1] = 0
clause [2] 4+=1
if clause[2] >= nbits:
print (’tried all, failing’)
exit (1)

Try all eight sign combinations,

or a random one if we’re randomizing

signs = [randint (0,7)] if do_.random else range(8)

for sign in signs:
sO0 = sign & 1
sl = (sign >> 1) & 1
s2 = (sign >> 2) & 1

is_ok = True

for i in ints:

00 = ((i >> clause[0]) & 1) ~ s0
ol = ((i > clause[1]) & 1) ~ sl
02 = ((i > clause[2]) & 1) ~ s2

if 00 =— 0 and ol =— 0 and 02 — O0:

12

is_.ok = False

break
if is_ok:
Check if this clause removes any undesired solutions
new_sols = []
for i in solutions:
00 = ((i > clause[0]) & 1) " sO
ol = ((i > clause[1]) & 1) sl
02 = ((i > clause[2]) & 1) ~ s2
if 00 = 1 or ol = 1 or 02 = 1:

new_sols.append (i)

if len(new_sols) < len(solutions):
#print (f {len(solutions)} — {len(new_sols)} solutions’)

solutions = new_sols
Need to add 1 because == —0
clauses . append ((
(1 4+ clause[0]) * (1 — 2 % s0),
(1 + clause[1]) * (1 — 2 % s1),
(1 + clause[2]) = (1 2 % s2)
)
return clauses
#seed (0)
nbits = 10
ints = [123, 321]
do_random = True
best = None
while True:
clauses = run(nbits, ints, do_random)
if best is None or len(clauses) < len(best):

best = clauses
print (clauses)
print (f’{len(best)} clauses’)

13

	Introduction
	3-SAT
	Doom maps
	Vertices
	Linedefs
	Sidedefs
	Sectors

	3-SAT building blocks
	Variables
	Literals
	Negative literals
	Positive literals

	Clauses

	Implementation
	Limitations

	Conclusions
	Future work
	doom_sat.py

